
2014 ESCAPE AND 2013-2015 TRANSIT CONNECT TECHNICAL INFORMATION

OVERVIEW

In the affected vehicles, localized overheating of the engine cylinder head may cause the cylinder head to crack, causing a pressurized oil leak that may result in a fire in the engine compartment.

Escape and Transit Connect Vehicles:
Service parts and repair procedures are now available to address this safety recall. Dealers are to perform repairs following the technical information in this document that include enhancements to the engine cooling and control systems. This service must be performed on all affected vehicles at no charge to the vehicle owner.

IMPORTANT! A small number of Escape vehicles will require unique PCM programming instructions. A small number of 2015 MY Transit Connect vehicles will require an additional cylinder head inspection. Please refer to Attachment VI prior to carrying out any repairs on Escape or 2015 MY Transit Connect vehicles, as certain VINs will require a contact to the Special Service Support Center (SSSC) for additional repair instructions.

Due to the complexity of this repair, the following considerations have been made to help the repair procedure go as smoothly as possible:

• Repair procedures have been divided alphabetically into multiple separate procedures.
• Parts have been packaged into kits.
• Each procedure includes:
 - Overview
 - List and photo of the parts required
 - List of unique tools needed
 - Service tips to help complete the repair

NOTE: Please read this procedure in its entirety, prior to performing repairs. Additionally, instructional videos have been developed to assist with the repair. Please refer to Attachment VII: Instructional Video Links to view the videos.
Recommended Tools:

<table>
<thead>
<tr>
<th>General Tools</th>
<th>General Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" Drive Ratchet (Power And Hand Tool)</td>
<td>Floor Jack</td>
</tr>
<tr>
<td>1/4" Drive 7, 8, and 10 mm Shallow Sockets</td>
<td>Wood Block</td>
</tr>
<tr>
<td>1/4" Drive 10 mm, 12 mm Deep Sockets</td>
<td>Coolant Pressure Tester</td>
</tr>
<tr>
<td>1/4" Drive T-25 And T-30 Torx Bit Sockets</td>
<td>Drain Pan</td>
</tr>
<tr>
<td>1/4" Drive 6 in (152 mm) Extension</td>
<td>Battery Charger</td>
</tr>
<tr>
<td>3/8" Drive Ratchet (Power And Hand Tool)</td>
<td>Extension Cord</td>
</tr>
<tr>
<td>3/8" Drive 10 mm, 15 mm Swivel Impact Sockets</td>
<td></td>
</tr>
<tr>
<td>3/8" Drive 6 in (152 mm) Extension</td>
<td></td>
</tr>
<tr>
<td>3/8" Drive 10 mm, 13 mm Deep Impact Sockets</td>
<td>Hydrometer/Refractometer</td>
</tr>
<tr>
<td>1/2" Drive Ratchet Power Tool And Hand Tool</td>
<td>Vacuum Tester/Re-filler</td>
</tr>
<tr>
<td>1/2" Drive 15 mm Shallow Impact Socket</td>
<td>IDS and VCM II</td>
</tr>
<tr>
<td>1/2" Drive Impact Swivel</td>
<td></td>
</tr>
<tr>
<td>1/2" Drive Impact 6 in (152 mm) Extension</td>
<td></td>
</tr>
<tr>
<td>1/2" Drive 9 in (228 mm) Impact Extension</td>
<td></td>
</tr>
<tr>
<td>1/2" Drive Torque Wrench</td>
<td></td>
</tr>
<tr>
<td>1/4" And 3/8" Drive Torque Wrench</td>
<td></td>
</tr>
<tr>
<td>Needle Nose Vise Grip Pliers</td>
<td></td>
</tr>
<tr>
<td>Needle Nose Pliers</td>
<td></td>
</tr>
<tr>
<td>13 mm Wrench</td>
<td></td>
</tr>
<tr>
<td>Plastic Trim Tools</td>
<td></td>
</tr>
<tr>
<td>Side Cutters</td>
<td></td>
</tr>
<tr>
<td>Coolant Hose Hook Tool</td>
<td></td>
</tr>
<tr>
<td>Pocket Screwdriver</td>
<td></td>
</tr>
<tr>
<td>Inspection Mirror</td>
<td></td>
</tr>
<tr>
<td>Drill</td>
<td></td>
</tr>
<tr>
<td>5.5 mm and 6.2 mm Drill Bits</td>
<td></td>
</tr>
<tr>
<td>Tape Measure/Ruler</td>
<td></td>
</tr>
<tr>
<td>Paint Stick/Pen</td>
<td></td>
</tr>
<tr>
<td>De-burr Tool</td>
<td></td>
</tr>
<tr>
<td>Pick Tool 12 in (304 mm) with 90 Degree Bend</td>
<td></td>
</tr>
<tr>
<td>2 Jaw Puller</td>
<td></td>
</tr>
<tr>
<td>Cable Operated Hose Clamp Pliers</td>
<td></td>
</tr>
<tr>
<td>Scissors</td>
<td></td>
</tr>
</tbody>
</table>

Special Tools

- 3/8" Drive 10 mm, 13 mm Deep Impact Sockets
- 1/2" Drive Ratchet Power Tool And Hand Tool
- 1/2" Drive 15 mm Shallow Impact Socket
- 1/2" Drive Impact Swivel
- 1/2" Drive Impact 6 in (152 mm) Extension
- 1/2" Drive 9 in (228 mm) Impact Extension
- 1/2" Drive Torque Wrench
- 1/4" And 3/8" Drive Torque Wrench
- Needle Nose Vise Grip Pliers
- Needle Nose Pliers
- 13 mm Wrench
SERVICE PROCEDURE

Procedure A - Initial Disassembly and Preparation for Inspection

OVERVIEW: This procedure details the components to be removed to enable initial vehicle inspection.

PARTS / SUPPLIES REQUIRED: None

UNIQUE TOOL REQUIREMENTS: None

SERVICE TIPS: Please note the following:

- The Inspection / Check Sheet (Attachment V) must be printed and started during "Procedure A".
- The air cleaner, mass air flow sensor and air intake tube are removed as an assembly.
- Cover the turbocharger inlet opening to prevent dropping any parts or debris into the turbocharger while the turbocharger inlet pipe is off.

1. Print a copy of the Inspection / Check Sheet (Attachment V), to record vehicle information and inspection/repair information for the vehicle. The Inspection / Check Sheet is to be attached/filed with the recall repair order following completion, it does not need to be provided to Ford at this time.

2. Fill out top of Inspection / Check Sheet including:
 - VIN
 - Technician ID
 - Repair Order Number
 - Repair Date
 - Vehicle Mileage
 - Vehicle Build Date
 - Open Field Service Actions

4. With the vehicle in NEUTRAL, position it on a hoist. Please follow the Workshop Manual (WSM) procedures in Section 100-02.

5. Using IDS/scan tool, retrieve and record DTCs on the Inspection / Check Sheet.
 - Any DTCs recorded will be used later in this procedure.

6. Remove the engine appearance cover.

7. Remove the cowl panel. Please follow the WSM procedures in Section 501-02.
NOTICE: When working with liquid or vapor tube connectors, make sure to use compressed air to remove any foreign material from the connector retaining clip area before separating from the tube or damage to the tube or connector retaining clip can occur. Apply clean engine oil to the end of the tube before inserting the tube into the connector.

NOTICE: Whenever turbocharger air intake system components are removed, always cover open ports to protect from debris. It is important that no foreign material enter the system. The turbocharger compressor vanes are susceptible to damage from even small particles. All components should be inspected and cleaned, if necessary, prior to installation or reassembly.

8. Disconnect the EVAP line quick connect coupling from the air intake tube center section. Set the clip aside for re-installation to prevent it from falling into the engine compartment. See Figure A1.

9. Loosen the clamp and disconnect the air intake tube from the turbocharger inlet pipe. See Figure A1.
NOTICE: Whenever turbocharger air intake system components are removed, always cover open ports to protect from debris. It is important that no foreign material enter the system. The turbocharger compressor vanes are susceptible to damage from even small particles. All components should be inspected and cleaned, if necessary, prior to installation or reassembly.

NOTE: The air cleaner assembly is removed from the vehicle with the mass air flow sensor and air intake tube attached.

NOTE: Escape shown, Transit Connect is similar.

10. Remove the air cleaner assembly. See Figure A2.

 a. Disconnect the mass air flow sensor electrical connector.
 b. Release the fresh air intake tube flap.
 c. Detach the mass air flow sensor wire harness retainer from the air cleaner assembly.
 d. Lift upward to disengage the two retaining grommets and remove the air cleaner assembly.

 ![Figure A2](image-url)

 FIGURE A2

11. Remove the battery tray. Please follow the WSM procedures in Section 414-01.
NOTICE: Whenever turbocharger air intake system components are removed, always cover open ports to protect from debris. It is important that no foreign material enter the system. The turbocharger compressor vanes are susceptible to damage from even small particles. All components should be inspected and cleaned, if necessary, prior to installation or reassembly.

12. Disconnect the PCV tube from the turbocharger inlet pipe. Remove the retainers and loosen the clamp at the turbocharger. Remove the turbocharger inlet pipe. See Figure A3.

FIGURE A3

13. Remove the rear engine mount bolt and take note of the bolt hole location. The bolt hole must be centered with the engine mount hole to allow for proper installation of the coolant stand-pipe bracket within Procedure J.

- If the bolt hole is centered with the engine mount, then powertrain assembly mount neutralizing **will not be required** within Procedure C.
- If the hole is not centered, please carry out the powertrain assembly mount neutralizing when instructed in Procedure C. See Figure A4.
14. Remove the retainers and the front underbody air deflector. See Figure A5.

NOTE: Escape shown, Transit Connect is similar.

15. Detach the wire harness retainer from the front cover, disconnect the crankshaft position sensor, turbocharger wastegate regulating valve solenoid, and turbocharger bypass valve electrical connectors. See Figure A6.
Procedure B - Inspection / Check Sheet Completion

OVERVIEW: The Inspection must be completed and documented on the Inspection / Check Sheet. The inspection will check for obvious concerns that require correction with additional focus on cooling system concerns such as:

- Internal coolant leaks
- External coolant leaks
- Any DTC(s) that could indicate a recent engine overheat event or internal engine damage that may have resulted from a previous cooling system concern.

PARTS / SUPPLIES REQUIRED: None

UNIQUE TOOL REQUIREMENTS: Rotunda Cooling System Pressure Tester (STN12270) and adapter (Snap-On TA52, AST ASSFZ-47, Redline RDL95-0750 or equivalent).

SERVICE TIPS: Use standard Workshop Manual and PC/ED Diagnostics, if necessary, to diagnose any cooling system or misfire DTC(s) retrieved and for any coolant loss concerns.

NOTE: Perform an underhood visual inspection for any obvious coolant, oil, transmission, or fuel leaks.

NOTE: If any concerns are identified repair as related damage before proceeding. If the coolant pressure test identifies concerns with the degas bottle, turbocharger return tube, upper section of the degas bottle return hose, or quick connect T-fitting at the coolant shutoff solenoid valve; note the condition. These items will be replaced as part of this recall. Refer to Dealer Bulletin Attachment I, Related Damage, for related damage claiming.

Vehicle Inspection

1. Visually inspect the coolant level in the degas bottle.
 - If the coolant level is visible in the degas bottle, proceed to Step 2.
 - If the coolant level is not visible in the degas bottle, add coolant as necessary, and proceed to Step 2.

 NOTE: Any gross loss of coolant must be identified and repaired prior to proceeding.

2. Remove the degas bottle cap.

3. Install a coolant pressure tester with adapter onto the degas bottle. Pressurize to 138 kPa (20 psi). Once stabilized, pressure should hold at 138 kPa (20 psi) for a minimum of 2 minutes.
 - If cooling system pressure does not hold for a minimum of 2 minutes, the source of pressure loss must be identified and repaired as necessary before proceeding.

4. Visually check for coolant leaks with the system under pressure.
5. Check the engine oil level to ensure it is within normal range, note if it is overfilled. Visually check for engine oil leaks at the rear surface of the cylinder head, above exhaust manifold, that may be the result of a crack in the cylinder head. See Figure B1.

- If an oil leak is detected at the rear surface of the cylinder head, replace the complete cylinder head assembly before proceeding.

NOTE: The turbocharger coolant tubes and exhaust manifold heat shield are removed for clarity.
6. DTCs - If any of the DTCs listed below are present, note and identify the cause before proceeding.

- If additional DTCs are present, diagnose and repair as required.

NOTE: Diagnosis for any of the following DTCs may require reinstallation of the air intake components and battery. Perform diagnosis and repairs as necessary. Refer to Dealer Bulletin Attachment I, Related Damage, for related damage claiming.

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0217</td>
<td>Engine Coolant Over Temperature Condition</td>
</tr>
<tr>
<td>P0218</td>
<td>Transmission Fluid Over Temperature Condition</td>
</tr>
<tr>
<td>P0219</td>
<td>Engine Over Speed Condition</td>
</tr>
<tr>
<td>P1299</td>
<td>Cylinder Head Over Temperature Protection Active</td>
</tr>
</tbody>
</table>

Engine Misfire DTCs

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0300</td>
<td>Random Misfire Detected</td>
</tr>
<tr>
<td>P030x</td>
<td>Cylinder X Misfire Detected</td>
</tr>
<tr>
<td>P0313</td>
<td>Misfire Detected With Low Fuel</td>
</tr>
<tr>
<td>P0316</td>
<td>Misfire Detected On Startup (First 1000 Revolutions)</td>
</tr>
</tbody>
</table>

7. Note any concerns identified and repairs made on the Inspection / Check Sheet.
Procedure C - Battery Tray Modification

OVERVIEW: With the battery tray removed, four holes need to be drilled in the right side to allow mounting of wiring harness components that will be added to support coolant level monitoring. The battery is reinstalled to allow module communication for reprogramming while additional repairs are performed.

PARTS / SUPPLIES REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Connector Junction Box</td>
</tr>
<tr>
<td>B</td>
<td>Push Pin Retainers (2 ea.)</td>
</tr>
<tr>
<td>C</td>
<td>Wiring Harness Clip</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: 5.5 mm (7/32”), 6.2 mm (1/4”) drill bits.

SERVICE TIPS: Remove the two (2) push pin retainers from the connector junction box, prior to installation. While installing the connector junction box ensure that the push pin retainers are installed in the proper orientation. See Figure C4.
1. **NOTE:** If a 6.2 mm drill bit is not readily available, use a 6 mm drill bit and ream the holes slightly to allow the push-pin retainers and wiring harness clip to fit snug.

Using the dimensions shown below, mark and drill the locations of the two (2) holes that are required for the *new* connector junction box, in the right side of the battery tray. See Figure C1.

a. Position the *new* connector junction box on the forward right side of the battery tray, 10mm (3/8") down from the top edge of the battery tray. Using the *new* connector junction box as a template, mark the two (2) hole locations on the battery tray. See Figure C1.

b. Remove the *new* connector junction box from the battery tray.

c. Using a 6.2 mm (1/4") drill bit, drill the two marked locations on the battery tray.

2. Measure and mark the two hole locations on the battery tray for the *new* wire harness clip. See Figure C2.
3. Using the appropriate size drill bit for the two (2) remaining marked locations on the battery tray, 5.5 mm (7/32") and 6.2 mm (1/4") as indicated in Figure C3, drill the two (2) holes. See Figure C3.

FIGURE C3

4. Deburr the four (4) previously drilled holes on the battery tray as necessary.

5. Attach the new connector junction box to the battery tray using the two (2) new push pin retainers. Install the new push pin retainers so the heads of the retainers are on the INSIDE of the battery tray. See Figure C4.

6. Install the new wire harness clip onto the battery tray. The christmas tree portion of the new wire harness clip is to be installed into the larger of the two mounting holes. See Figure C4.

FIGURE C4
7. **NOTE**: This step is only required if the bolt hole is not centered with the engine mount hole. The bolt hole must be centered to allow for proper installation of the coolant stand-pipe bracket in Procedure J.

If required, perform the powertrain assembly mount neutralizing procedure, (reference Step 13 in Procedure A). Please follow the WSM procedures in Section 303-00.

8. Position the battery tray back into the vehicle and install the three (3) bolts. See Figure C6.

- 11 Nm (97 lb-in).
Procedure D - Coolant Stand-pipe Wire Harness Installation

OVERVIEW: The coolant stand-pipe wire harness is partially installed in this procedure to complete the CAN Network connections which will allow module communication for reprogramming.

PARTS / SUPPLIES REQUIRED:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6-Pin EPAS Connector Coolant Stand-pipe Wire Harness</td>
</tr>
<tr>
<td>B</td>
<td>3-Pin EPAS Connector Coolant Stand-pipe Wire Harness</td>
</tr>
<tr>
<td>C</td>
<td>Wire Harness Ground Bolt</td>
</tr>
<tr>
<td>D</td>
<td>Protective Foam Pad</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: None

SERVICE TIPS: None
1. Detach the retaining clip from the battery tray mounting bracket and disconnect the EPAS electrical connector. See Figure D1.

2. Remove and discard the retaining clip from the EPAS electrical connector. See Figure D1.

3. Install and connect the battery. For additional information, refer to WSM Section 414-01.
 - Do not reinstall the engine air cleaner assembly at this time. It will be installed in one of the following procedures.
NOTE: Escape shown, Transit Connect is similar.

4. Install the coolant stand-pipe wiring harness. See Figure D2.

 1. Connect the electrical connector to the connector junction box on the battery tray.
 2. Connect and attach the electrical connectors to the white retaining clip that was previously installed on the battery tray.
 3. **Escape Vehicles**: Connect and attach the coolant stand-pipe wiring harness electrical connector to the EPAS electrical connector.

 Transit Connect Vehicles: Connect the coolant stand-pipe wiring harness electrical connector to the EPAS electrical connector and tape it to the battery cable harness.

4. Pre-route the wiring harness. Using the clips to attach to the engine compartment wiring harness.

FIGURE D2

5. **NOTICE**: Ensure the junction box surface is clean and free of any dirt and debris prior to foam pad installation.

Apply foam pad over the connector junction box and electrical connector. See Figure D3.
6. **NOTICE:** Ensure the surface is clean and free of any dirt and debris prior to installing the new ground bolt.

Install the new coolant stand-pipe wire harness ground eyelet to the vehicle using the new wire harness ground bolt. See Figure D4.

- 12 Nm (106 lb-in).

NOTE: The new coolant stand-pipe wire harness is highlighted to show routing and connection points.

7. Position the stand-pipe wire harness aside. It will be routed/secured and connected later.

8. Install the transmission fluid heater coolant control valve to the battery tray and install the two (2) retainers. See Figure D5.
Procedure E - Instrument Panel Cluster (IPC) Reprogramming

OVERVIEW: The IPC software is being updated to coordinate cooling system improvements and instrument cluster messaging. IPC reprogramming can be performed while performing other repairs on the vehicle. The PCM must be reprogrammed during Procedure L after cooling system repairs and bleeding are completed.

PARTS / SUPPLIES REQUIRED: None

UNIQUE TOOL REQUIREMENTS:
- IDS with release 108.03 or higher
- Portable battery charger (10 to 20 amps)

SERVICE TIPS: Begin IPC reprogramming and continue to perform repairs during IPC reprogramming. Reprogramming times for the IPC can be significantly reduced by using a VCM II instead of a VCM.

Important Information for Module Programming

NOTE: When programming or reprogramming a module, use the following basic checks to ensure programming completes without errors.

- Make sure the 12V battery is fully charged before carrying out the programming steps and connect IDS/scan tool to a power source.
- Inspect Vehicle Communication Module (VCM) and cables for any damage. Make sure scan tool connections are not interrupted during programming.
- A hardwired connection is strongly recommended.
- Turn off all unnecessary accessories (radio, heated/cooled seats, headlamps, interior lamps, HVAC system, etc.) and close doors.
- Disconnect/depower any aftermarket accessories (remote start, alarm, power inverter, CB radio, etc.).

NOTE: Accessory remote start systems have been reported to interfere with IPC module reprogramming and can result in loss of module communication. If the vehicle is equipped with an accessory remote start system it must be disconnected prior to attempting IPC module reprogramming.

- Follow all scan tool on-screen instructions carefully.
- Disable IDS/scan tool sleep mode, screensaver, hibernation modes.
- Create all sessions key on engine off (KOEO). Starting the vehicle before creating a session will cause errors within the programming inhale process.
- Ensure the headlamps and accessories are turned off.
Additional Instructions Required for Transit Connect - IPC Inspection Prior To Module Reprogramming

NOTE: Some instrument clusters require replacement prior to module reprogramming to prevent a potential battery drain concern.

1. Inspect the cluster appearance. Does the instrument cluster have a chrome bezel and a large information display screen. See Figure E1.

 Yes – Proceed to the next step.
 No – Proceed to IPC module reprogramming, All Vehicles.

2. Connect the IDS and begin the IPC reprogramming. At the start of programming the IDS will display the IPC module software part number. Note the IPC software part number.

3. Is the IPC module software part number any of the following?
 DT1T-14C026-ZA, DT1T-14C026-ZB, or DT1T-14C026-ZC

 Yes – Replace the IPC then proceed to IPC module reprogramming. Refer to WSM Section 413-01, for IPC replacement.
 No – IPC replacement is not necessary. Proceed with the IPC module reprogramming.
Module Reprogramming

NOTE: The IDS must be updated to software level 108.03 or later to perform the FSA. If the IDS is not updated when the FSA is performed, it may result in various DTCs and drivability concerns. It is important that all steps of this FSA are performed in the order listed. This will ensure proper operation of the vehicle once completed.

NOTE: Reprogram appropriate vehicle modules before performing diagnostics and clear all Diagnostic Trouble Codes (DTCs) after programming. For DTCs generated after reprogramming, follow normal diagnostic service procedures.

1. The IPC reprogramming can take up to 1 hour or more. Connect a portable battery charger of 10 to 20 amps to an extension cord and to the 12V battery. This will allow the vehicle to be raised and lowered as needed while completing the remaining repair procedures, and ensure uninterrupted reprogramming is achieved. Programming times can be significantly reduced by using a VCMII.

NOTE: Periodically check the status of the reprogramming progress to continue the process, as required.

2. Reprogram the IPC using IDS release 108.03 or higher.

NOTE: If DTC U2101 is set after reprogramming of the IPC, please configure the Car Configuration Parameters. Using the IDS, select Tool Box/Module Programming/Programmable Parameters/Car Configuration Parameters(s)/Retrieve PTS derived ASBUILT data.

NOTE: Follow the IDS on-screen instructions to complete the reprogramming procedure.

Recovering a module when programming has resulted in a blank module:

NEVER DELETE THE ORIGINAL SESSION!

a. Obtain the original IDS tool which will have the original IDS session, that was used when the programming error occurred during module reprogramming (MR) or programmable module installation (PMI).

b. Disconnect the VCM from the data link connector (DLC) and the IDS.

c. Reconnect the VCM to IDS and then connect to the DLC. Once reconnected, the VCM icon should appear in the corner of the IDS screen. If it does not, troubleshoot the IDS to VCM connection.

d. Locate the original vehicle session when programming failed. This should be the last session used in most cases. If not, use the session created on the date that the programming failed.

NOTE: If the original session is not listed in the previous session list, click the Recycle Bin icon at the lower right of the previous session screen. This loads any deleted sessions and allows you to look through them. Double-click the session to restore it.

e. Once the session is loaded, the failed process should resume automatically.

f. If programming does not resume automatically, proceed to the Module Programming menu and select the previously attempted process, PMI or MR.

g. Follow all on-screen prompts/instructions.

h. The last screen on the IDS may list additional steps required to complete the programming process. Make sure all applicable steps listed on the screen are followed in order.
Procedure F - Turbocharger Wire Harness Taping

OVERVIEW: This procedure wraps the turbocharger wire harness with Coroplast® tape to prevent the entry/buildup of fluids and debris in the convolute which could ignite from an ignition source.

PARTS / SUPPLIES REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coroplast® Tape</td>
</tr>
<tr>
<td>B</td>
<td>Wire Harness Retainer w/Tie- Strap</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: None

SERVICE TIPS: Tips for wrapping the harness are included in the procedure.
NOTE: Figure F1 is for reference only the harness retainers were previously disconnected in Procedure A.

1. Route the turbocharger wire harness to the top of the engine compartment. See Figure F2.
2. Disconnect the rear Variable Camshaft Timing (VCT) oil control solenoid. See Figure F1.
 - Detach the VCT harness retaining clip from the turbocharger outlet tube.

3. Replace the wire harness retainer with a new one supplied in the vehicle parts kit. See Figure F3.
 - Mark the wire harness retainer location before removal.

4. Wrap the turbocharger wire harness convolute with the Coroplast® tape provided in the service kit. See Figure F3.
 - Start and finish each length of tape applied with three (3) initial and three (3) finishing wraps.
 - Apply each wrap of tape with a 50% overwrap.
 - First, wrap the takeout for the crankshaft position sensor. Begin the wrap at the connector and end this portion of wrapping by going around the main harness at the takeout. See Figure F3, (A).
 - Wrap the turbocharger harness starting at the takeout to the rear VCT solenoid. Proceed down the remaining length of harness to the turbocharger wastegate regulating valve solenoid connector. See Figure F3, (B).

5. Connect the rear VCT oil control solenoid. See Figure F1.
 - Attach the VCT harness retaining clip to the turbocharger outlet tube.

6. Route the wire harness back down to the crankshaft position sensor, turbocharger wastegate regulating valve solenoid, and turbocharger bypass valve. See Figure F1.

7. Attach the wire harness retainer to the front cover. Connect the crankshaft position sensor, turbocharger wastegate regulating valve solenoid, and turbocharger bypass valve electrical connectors. See Figure F1.
Procedure G - Thermostat Replacement - (Not required for Any Escape or Transit Connect Vehicles)

OVERVIEW: Thermostat replacement is not required for any Escape or Transit Connect Vehicles. Proceed to Procedure H.

Procedure H - Engine Coolant Bypass Valve Replacement

OVERVIEW: The engine coolant bypass valve is being replaced in this procedure.

PARTS / SUPPLIES REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Engine Coolant Bypass Valve</td>
</tr>
<tr>
<td>B</td>
<td>Hose Clamp</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: None

SERVICE TIPS: None
1. Drain the cooling system. Please follow the WSM procedures in Section 303-03.

2. Disconnect the engine coolant bypass valve electrical connector. See Figure H1.

3. Release the clamp and disconnect the coolant hose. Discard the clamp. See Figure H2.
4. Remove the bolts from the engine coolant bypass valve. Remove and discard the valve and O-ring seal. See Figure H3.

- 89 lb.in (10 Nm).

5. Install a new engine coolant bypass valve and O-ring seal by reversing the removal procedure.
Procedure I - Coolant Degas Bottle, Degas Bottle Cap, and Coolant Hose Replacement

OVERVIEW: In this procedure, the coolant hose that runs between the degas bottle and thermostat quick connect T-fitting is replaced with an updated hose that allows for connection to the turbocharger coolant return line and the new coolant stand-pipe.

PARTS / SUPPLIES REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coolant Degas Bottle to Thermostat Housing Hose</td>
</tr>
<tr>
<td>B</td>
<td>Large Hose Clamps</td>
</tr>
<tr>
<td>C</td>
<td>Small Hose Clamp</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: None
SERVICE TIPS: The new coolant hoses and connection points are called out below. See Figure I1

1. Remove and discard the turbocharger coolant return hose. See Figure I2.

2. Remove and discard the degas bottle and cap. See Figure I2.
3. Release the clip and disconnect the quick connect T-fitting from the coolant shutoff solenoid valve. See Figure I3.

4. Position the degas bottle hose downward out the bottom of the engine compartment. See Figure I4.

5. Use a pair of needle nose VISE-GRIP® pliers to compress the degas bottle hose clamp and slide the clamp downward off of the quick connect T-fitting. See Figure I4.

 • Space the needle nose VISE-GRIP® plier teeth 6.35 mm (1/4") apart when closed so that they will fully compress the hose clamp when locked, to allow the clamp to be slid down the hose for hose removal.
6. Remove and discard the degas bottle hose and clamp. See Figure I4.

7. Remove and discard the o-ring inside the quick connect T-fitting. See Figure I5.

8. Ensure the inside of the quick connect T-fitting is free from dirt and debris.

9. Lubricate the new o-ring with coolant and install it into the quick connect T-fitting. See Figure I5.

10. Route the degas bottle hose upward, back to the degas bottle and to the turbocharger outlet tube.

11. Connect the quick connect T-fitting to the coolant shutoff solenoid valve. See Figure I6.
NOTE: Lubricating the new coolant hoses with coolant will aid in easier installation.

12. Position a new clamp onto the longer section of the new degas bottle hose and install the hose onto the quick connect T-fitting. Ensure the "I" mark on the new degas bottle hose is aligned with the alignment mark on the quick connect T-fitting. Also align the clamp center with the "I" mark. See Figure I7.

13. Connect the new turbocharger coolant return hose to the turbocharger coolant outlet tube and release the clamp. Attach the wire harness retainer to the new turbocharger coolant return hose. See Figure I8.
Procedure J - Coolant Stand-pipe, Degas Bottle and Cap Installation

OVERVIEW: The coolant stand-pipe provides coolant level information to the PCM and IPC via the CAN network, this prevents overheat issues due to low coolant level by informing the driver when the coolant level is low. The coolant stand-pipe and bracket is installed using the engine mount rear fixing bolt. On installation, the wiring harness is routed across the engine bay wiring loom and the related coolant hoses are attached.

PARTS / SUPPLIES REQUIRED:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coolant Stand-pipe (Includes Coolant Level Sensor)</td>
</tr>
<tr>
<td>B</td>
<td>Coolant Stand-pipe Bracket</td>
</tr>
<tr>
<td>C</td>
<td>Coolant Stand-pipe to Bracket Bolt</td>
</tr>
<tr>
<td>D</td>
<td>Engine Mount Bolt</td>
</tr>
<tr>
<td>E</td>
<td>Small Hose Clamps (x2)</td>
</tr>
<tr>
<td>F</td>
<td>Large Hose Clamp</td>
</tr>
<tr>
<td>G</td>
<td>Degas Bottle</td>
</tr>
<tr>
<td>H</td>
<td>Degas Bottle Cap</td>
</tr>
</tbody>
</table>
1. Route and secure the new coolant stand-pipe wiring harness along the engine wiring harness. See Figure J1.

NOTE: The coolant stand-pipe electrical connector will be connected after the coolant stand-pipe is installed.

NOTE: The new coolant stand-pipe wire harness is highlighted to show routing and connection points.

NOTE: The coolant by-pass hose is removed for clarity.

![Figure J1](image1)

FIGURE J1

2. **NOTICE:** The bolt hole must be centered with the engine mount hole to allow for proper installation of the coolant stand-pipe bracket. **DO NOT** use power tools to re-install the bolt.

Position the new coolant stand-pipe bracket on the engine mount. The bolt will center the bracket and the locating tab on the bottom of the bracket should be pressed against the engine mount. Hand start the bolt and then tighten both engine mount retaining bolts at this time. See Figure J2.

- 90 Nm (66 lb.ft).

![Figure J2](image2)
3. Install the coolant stand-pipe to the bracket. See Figure J3.

 1. Push the coolant stand-pipe fully down in to position.
 2. Tighten the bolt to 5 Nm (44 lb.in).
 3. Connect the electrical connector.
 4. Install the harness push pin to the A/C Line bracket.

NOTE: Lubricating the new coolant hoses with coolant will aid in easier installation.

NOTE: When connecting the coolant hoses to the stand-pipe ensure the hoses are fully installed and meet the hose stops, before securing in place with hose clamps.

4. Install the new coolant hoses to the coolant stand-pipe. See Figure J4.

NOTE: Check the status of the IPC reprogramming progress.
5. **NOTE:** Do Not fill the cooling system at this time.

Install the degas bottle and connect the coolant hoses. See Figure J5.

![Figure J5](image1)

FIGURE J5

6. **NOTE:** There must be a minimum clearance of 10 mm (3/8") between the coolant stand-pipe and degas bottle. To achieve this, it may be necessary to adjust the coolant stand-pipe mounting bracket and the coolant hose positions as necessary.

NOTE: Make sure that no strain is placed on the coolant hose and pipe.

Make sure the coolant stand-pipe is not contacting the coolant degas bottle. Adjust the coolant stand-pipe mounting bracket if required. See Figure J6.

![Figure J6](image2)

FIGURE J6
Procedure K - Escape Vehicles Only - Battery B+ Terminal Cable Routing Inspection and Tie- Strap Retention

NOTE: The Battery B+ Terminal Cable Routing Inspection is only required on Escape vehicles equipped with an Automatic Transmission. Procedure K does not apply to Transit Connect vehicles.

OVERVIEW: Ensure the battery positive cable to the generator is routed correctly. If routed incorrectly, the cable may contact and chafe at the transmission lifting eye on top of the transmission. Upon inspection, if the cable is routed incorrectly, it must be re-routed properly and secured to the engine main wiring harness using a tie-strap.

PARTS / SUPPLIES REQUIRED:

A Tie-Strap

UNIQUE TOOL REQUIREMENTS: None

SERVICE TIPS: None
1. Inspect the battery B+ terminal cable for improper routing and/or any signs of wire and insulation damage. See Figures K1 and K2.

- If the battery cable is damaged, replace it prior to proceeding.
- A **properly routed** cable can be identified by having the cable routed from the generator across the front of the engine and with the cable secured to the main engine wiring harness with a tie-strap near the forward left side of the intake manifold. See Figure K1.
- An **improperly routed** cable can be identified by the cable being routed forward of the engine near the radiator, and is not attached to the main engine wiring harness with a tie-strap. See Figure K2.
NOTICE: Ensure the IPC reprogramming has completed prior to disconnecting battery cables, if required.

2. If the battery positive terminal cable is routed improperly and isn’t damaged, pull it back through to the center of the engine compartment. Then re-route it up and near the front left side of the engine. Secure it to the main engine wiring harness using the tie-strap and existing clips as shown. See Figure K1.

 • If required to disconnect the battery B+ terminal cable for rerouting, the battery negative cable must be disconnected. Please use the procedures in WSM section 414-01. Reconnect the battery after the rerouting and reinstallation of the battery B+ terminal cable is completed.
 • If removed, tighten the battery B+ terminal cable to 12 Nm (106 lb-in).

3. Install the tie-strap provided in the kit to secure the starter/generator battery positive cable to the engine wire harness and prevent the cable from contacting the transmission lifting eye. See Figure K1.
Procedure L - Vehicle Reassembly, PCV Tube Retention, and Powertrain Control Module (PCM) Reprogramming

OVERVIEW: The vehicle is reassembled, the cooling system is vacuum filled, pressure tested and bled; and a PCV tube retainer is installed. The PCM is reprogrammed and coolant level sensor operation is validated.

PARTS / SUPPLIES REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PCV Tube Retainer / Tie-Strap</td>
</tr>
<tr>
<td>B</td>
<td>Motorcraft® Orange Antifreeze / Coolant Prediluted (VC-3DIL-B (U.S.) CVC-3DIL-B (Canada) / WSS-M97B44-D2) (Obtain Locally) (Not Shown)</td>
</tr>
</tbody>
</table>

UNIQUE TOOL REQUIREMENTS: Vacuum Filling Tool, Hydrometer and/or Refractometer, Cooling System Pressure Tester

SERVICE TIPS: Follow procedure steps to verify proper coolant fill.
NOTE: This procedure contains unique steps for reassembly, including installation of new components.

1. If disconnected previously, connect the battery cables.
 a. Install and tighten the battery B+ terminal cable to 12 Nm (106 lb-in).
 b. Connect the battery negative cable to ground. Please follow the WSM procedures in Section 414-01.

NOTE: Remove protective covers that were placed over the turbocharger air intake system before re-installing components.

2. Install the turbocharger inlet pipe and connect the PCV hose to the turbocharger inlet pipe. See Figure A3.
 • Tighten the turbocharger inlet pipe fasteners to 5 Nm (44 lb-in).
 • Tighten the turbocharger inlet pipe-to-turbocharger clamp to 5 Nm (44 lb-in).

3. Vacuum fill the cooling system. Refer to WSM Section 303-03 for coolant specifications.
 • Do not bleed the cooling system at this time.
 • Coolant level should be filled to the "MAX" mark on the degas bottle.

4. Install a coolant pressure tester with adapter onto the degas bottle. Pressurize to 138 kPa (20 psi). Once pressure stabilizes, pressure should hold at 138 kPa (20 psi) for a minimum of 2 minutes.
 - If pressure test fails, the source of pressure loss must be identified and repaired as appropriate before proceeding. Retest the cooling system, if required.

5. Install the air cleaner assembly. See Figure A2.
 a. Install the air cleaner assembly.
 b. Attach the fresh air intake tube flap.
 c. Connect the mass air flow sensor electrical connector.
 d. Tighten the clamp to 5 Nm (44 lb-in).

6. Connect the EVAP line quick connect coupling to the air intake tube center section and install the retention clip. See Figure A1.
7. Install the PCV tube retainer / tie-strap provided in the vehicle parts kit. See Figure L1.

 a. Attach the clamp onto the PCV tube and secure.
 b. Wrap the tie strap around the air intake tube center section and tighten.
 c. Trim the excess length from the tie strap.

![Figure L1](image)

FIGURE L1

8. Install the front under-body air deflector and retainers. See Figure A5.

9. Bleed the cooling system. Please follow the WSM procedures in Section 303-03.
10. Reprogram the PCM using IDS release 108.03 or higher. For additional information, Refer to "Procedure E" (Important Information for Module Reprogramming).

11. Using IDS select "Coolant Level Sensor Check". See Figure L2.

 - Follow the on screen instructions to complete the "Coolant Level Sensor Check" procedure.

FIGURE L2

NOTE: If the coolant level is too high, additional cooling system bleeding is needed. If it is proving difficult to bleed, it may be necessary to drive the vehicle up to 12.5 Miles (20 km) to remove the air from the system.

12. Check coolant concentration using the hydrometer/refractometer to make sure it is correct for the local climate.

13. Remove the portable battery charger and install the battery cover.

14. Install the cowl panel. Please follow the WSM procedures in Section 501-02.

15. Install the engine appearance cover.

16. Perform any other open recalls.

17. Coolant level should be filled to the "MAX" mark on the degas bottle once the engine is cold, prior to returning the vehicle to the customer.